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ABSTRACT. A set of vectors of equal norm in C? represents equiangular
lines if the magnitudes of the inner product of every pair of distinct vectors
in the set are equal. The maximum size of such a set is d?, and it is
conjectured that sets of this maximum size exist in C? for every d > 2. We
describe a new construction for maximum-sized sets of equiangular lines,
exposing a previously unrecognized connection with Hadamard matrices.
The construction produces a maximum-sized set of equiangular lines in
dimensions 2, 3 and 8.

1. INTRODUCTION

Equiangular lines have been studied for over 65 years [13], and their con-
struction remains “[o]ne of the most challenging problems in algebraic combi-
natorics” [16]. In particular, the study of equiangular lines in complex space
has intensified recently, as its importance in quantum information theory has
become apparent [1, 9, 17, 18]. The main question regarding complex equian-
gular lines is whether the well-known upper bound (see [6], for example) on
the number of such lines is attainable in all dimensions: that is, whether there
exist d? equiangular lines in C? for all integers d > 2. Zauner [19] conjectured
15 years ago that the answer is yes. This conjecture is supported by exact ex-
amples in dimensions 2, 3 [5, 17], 4, 5 [19], 6 [8], 7 [1, 16], 8 [2, 9, 14, 18], 9-15
9, 10, 11}, 16 [3], 19 [1, 16], 24 [18], 28 [2], 35 and 48 [18], and by examples
with high numerical precision in all dimensions d < 67 [17, 18].

Hoggar [14] gave a construction for d = 8 in 1981. Although other exam-
ples in C® have since been found [2, 9, 18], Hoggar’s 64 lines are simplest to
construct and can be interpreted geometrically as the diameters of a polytope
in quaternionic space.
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M. Appleby [4] observed in 2011: “In spite of strenuous attempts by numer-
ous investigators over a period of more than 10 years we still have essentially
zero insight into the structural features of the equations [governing the exis-
tence of a set of d? equiangular lines in C%) which causes them to be soluble.
Yet one feels that there must surely be such a structural feature ... (one of
the frustrating features of the problem as it is currently formulated is that
the properties of an individual [set of d? equiangular lines in C%) seem to be
highly sensitive to the dimension).” In view of this, finding a structure for
maximum-sized sets of equiangular lines that is common across multiple di-
mensions is highly desirable. One such example, due to Khatirinejad [16], links
dimensions 3, 7 and 19 by constraining the “fiducial vector”, from which the
lines are constructed, to have all entries real.

In this paper we construct a maximum-sized set of equiangular lines in
C? from an order d Hadamard matrix, for d € {2,3,8}. This gives a new
connection between the study of complex equiangular lines and combinatorial
design theory. It also links three different dimensions d. Although we show
that the construction in its current form cannot be extended to other values
of d, we speculate that the construction could be modified to deal with other
dimensions by using more than one complex Hadamard matrix.

The constructed set of 64 equiangular lines in C?® is of particular interest.
It is almost flat: all but one of the components of each of its 64 lines have
equal magnitude. It turns out [20] that this constructed set is equivalent to
Hoggar’s 64 lines under a transformation involving the unitary matrix

0 0 i -1 0 0 1 i
0 0 -1 i 0 0 4 1

1 i 0 0 —i -1 0 0

i 1 0 0 1 i 0 0

(1) U=31 o 0o = 1 0 o0 1 i
0 0 1 —i 0 0 4 1

l =i 0 0 —i -1 0 0

i -1 0 0 1 i 0 0

(Specifically, the Hoggar lines are equivalent to a set {x;} of 64 lines in C®
given by Godsil and Roy [7, p. 6], and our constructed set is {v2Uz;}.)
We believe that the description of the Hoggar lines presented here, using the
basis obtained from a Hadamard matrix of order 8, is simpler than Hoggar’s
construction.

2. COMPLEX EQUIANGULAR LINES FROM HADAMARD MATRICES

We now introduce the main objects of study.
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A line through the origin in C? can be represented by a nonzero vector
x € C? which spans it. The angle between two lines in C? represented by

vectors x, y is given by
N ( (. y)| >
rccos | m———— |,
[ - Yl

where (x,y) is the standard Hermitian inner product in C¢ and ||z|| =
|(z, )| is the norm of x. A set of m > 2 distinct lines in C¢, represented

by vectors @1, ..., x,,, is equiangular if there is some real constant ¢ such that
T, x .
arccos (M) =c forall j #k.
[EAIRRIEA
To simplify notation, we can always take x4, ..., x,, to have equal norm, and

then it suffices that there is a constant a such that
|(x;,z)| =a forall j#k.

An order d complex Hadamard matrizis a d X d matrix, all of whose entries
are in C and are of magnitude 1, for which

HH'" =dI,,

where HT is the conjugate transpose of H (so that the rows of H are pairwise
orthogonal). If, additionally, the entries of H are all in {1,—1}, then H is
called a real Hadamard matriz or just a Hadamard matrix. A simple necessary
condition for the existence of a Hadamard matrix of order d > 2 is that 4
divides d; it has long been conjectured that this condition is also sufficient
(see [15], for example).

We call two complex Hadamard matrices H, H' equivalent if there exist
diagonal unitary matrices D, D’ and permutation matrices P, P’ such that

H' = DPHP'D'.

Example 1. Let w = e*™/3 and let H, H' be the following order 3 complex
Hadamard matrices:

1 1 1 w 1 1
H=]|1 w ? H = 1 w 1
1 w? w w? w? 1

Then H and H' are equivalent, since we can obtain H' from H by interchanging
columns 2 and 3 and then multiplying the resulting first column and third row
by w and the resulting second row by w?. That is,

1 0 O 100 1 00 w 0 0
H=|0 & 0 01 0 ||H|OO01 0 10
0 0 w 001 010 0 01
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= DPHP'D'.

We now describe the main construction of this paper. Let H be an order d
complex Hadamard matrix. Consider H to represent d vectors given by the
rows of the matrix. Form d sets of d vectors Hy(v),..., Hy(v) from H, where
H;(v) is the set of vectors formed by multiplying coordinate j of each vector
of H by the constant v € C, and let H(v) = U_, H;(v).

The main result of this paper, given in Theorem 1, is that in dimensions
d = 2,3,8 we can construct a set of d? equiangular lines in C? as H (v) for some
order d complex Hadamard matrix H and constant v € C, and furthermore
that these are the only dimensions for which this is possible. We firstly give
examples of the construction in each of these three dimensions. Although
the examples in dimensions 2 and 3 coincide with examples previously found
using another construction method [19, Section 3.4], we include them here
to illustrate a new connection between the three dimensions via a common
construction.

Example 2. Let H be the following order 2 complex Hadamard matriz:

(v i)
(v —1)
(1 i)
(1 —wi)

which are equiangular in C* for v = 1(1+V/3)(1+1).

Example 3. Let H be the following order 3 complex Hadamard matriz:

1
2

1
H = 1 w
w w?

—_ & =
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Then H(v) consists of the following 9 vectors

(v 1 1)
(v w w?)
(vw 1 w?)
(1 v 1)
(1 w w?)
(w v W)
(1 1 wv)
(1 w w?)
(w 1 ww?)
which are equiangular in C* for v = —2.

Example 4. Let H be the following order 8 Hadamard matrix:

11 1 1 1 1 1
-1 1 -1 1 -1 1 -1
1 -1 -1 1 1 -1 -1
-1 -1 1 1 -1 -1 1

Il
e = T e S e e e R
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Then H(v) consists of the following 64 vectors:

NN NN N N TN T NN NN NN N T NN NN NN N T NN TN TN NN TN TN
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1
-1
-1

1

1
-1
-1

1

v
—v
—v

v

v
—v
—v

v

1
-1
-1

1

1
-1
-1

1

1
-1
-1

1

1
-1
-1

1

1
1
~1
~1
1
1
~1
~1
1
1
~1
~1
1
1
~1
~1
1
1
~1
~1
1
1
—1
~1
1
1
~1
~1
1
1
~1
~1

2 2 2 2 2 2 2 2 — o o o =~
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-1
1
-1
1
-1
1
-1
1
-1
1
-1
1
-1
1
-1

o o o e L B e B e B e e B o R e B | o o e
N N N O Y S N N — N N e e — N N S e e — N e e

e e N s e NN e e N s T N N N D s N N e P NN e s N s e N N N
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— o o o~ — — =~ — — — = 2 D2 D D2 DD 2>
o [ | _ [

1 1 1 1
1 -1 1 -1
-1 -1 1 1
-1 1 1 -1
1 1 -1 -1
1 -1 -1 1
-1 -1 -1 -1
—1 1 -1 1
v 1 1 1
v —1 1 -1
—v —1 1 1
—v 1 1 -1
v 1 -1 -1
v —1 -1 1
—-v -1 -1 -1
—v 1 -1 1
1 1 v 1
1 -1 v —1
-1 -1 v 1
-1 1 v —1 -1
1 1 —v -1 -1
1 -1 —wv 1
-1 -1 —v -1
—1 1 —w 1
1 1 1 1
1 -1 1 -1
-1 -1 1 1
-1 1 1 -1
1 1 -1 -1
1 -1 -1 1
-1 -1 -1 -1
-1 1 -1 1

1
~1
1
~1
1
~1
1
—1
1
~1
1
~1
1
~1
1
~1
1
—1
1
~1
1
~1
1
~1
1
~1
1
~1
1
~1
1
~1

R N N N —_— — —_—

It is easily verified by hand that each of the sets of vectors in Examples 2,
3 and 4 comprises a set of d? equiangular lines in their respective dimensions.

which are equiangular in C® for v = —1 + 2i.
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3. ALLOWABLE CONSTRUCTION PARAMETERS

The main theorem of this paper is the following, in which we characterize
all dimensions d, order d complex Hadamard matrices H and constants v € C
for which one can construct d? equiangular lines as H(v).

Theorem 1. Let d > 2. Let H be an order d complex Hadamard matrixz and
v € C be a constant. Then H(v) is a set of d* equiangular lines if and only if
one of the following holds:

(1) d=2andv e {3(1£V3)(1+14), 31 £V3)(1—14),—2(1 £ V3)(1+1),
(2) d=3 and v € {0,-2,1++/3i},
(3) d =8 and H is equivalent to a real Hadamard matriz andv € {—14+2i}.

Notice that if H(v) is a set of equiangular lines then, for any complex
Hadamard matrix H' that is equivalent to H, the set H'(v) is also a set of
equiangular lines. This is because permutation of the rows of H does not
change the set H(v); permutation of the columns of H applies a fixed permu-
tation to the coordinates of all vectors of H (v); multiplication of a row of H
by a constant ¢ € C of magnitude 1 multiplies one vector in each set H;(v)
by ¢; and multiplication of a column of H by a constant ¢ € C of magnitude
1 multiplies a fixed coordinate of each vector of H(v) by ¢. In each case, the
magnitude of the inner product between pairs of distinct vectors in H(v) is
unchanged.

There are only three types of inner product that can arise between distinct
vectors of H(v):

(i) the inner product of two distinct vectors within a set H;(v),
(ii) the inner product of two vectors of distinct sets H;(v), Hi(v) which are
derived from the same row of H,
(ili) the inner product of two vectors of distinct sets H,;(v), Hy(v) which are
derived from distinct rows of H.

Therefore H(v) is a set of d* equiangular lines if and only if the equations
obtained by equating the magnitudes of every inner product of type (i), (ii)
and (iii) have a solution. In Lemma 2 we show that only one magnitude
occurs for all inner products of type (i) and likewise for all inner products of
type (ii). In Propositions 3—4 and Theorem 5 we show that, for dimensions 2,
3 and 8, inner products of type (iii) take values in only a small set. It is then
straightforward to characterize the solutions obtained by equating magnitudes,
for these three dimensions, and to show that the corresponding equations have
no solutions in other dimensions. This establishes Theorem 1.
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Lemma 2. Let v = a +ib for a,b € R. For all d, every inner product of
type (i) has magnitude |a*> + b* — 1| and every inner product of type (ii) has
magnitude |2a + d — 2|.

Proof. Two vectors having inner product of type (i) are derived from distinct
rows of H; thus their inner product in H is 0. In H(a + ib) these vectors
are multiplied in the same coordinate by a + b, giving an inner product of
magnitude |a® + b* — 1].

Two vectors having inner product of type (ii) are derived from the same row
of H; thus their inner product in H is d (given by a contribution of 1 from each
coordinate of the vectors). In H(a+ib) these vectors are multiplied in different
coordinates by a + ib, giving an inner product of magnitude |[2a +d —2|. O

Proposition 3 (d = 2). Let H be an order 2 complex Hadamard matriz. Then
H(v) is a set of 4 equiangular lines in C* if and only if v € {3(1 £ V3)(1+1),

Proof. Up to equivalence, the only order 2 complex Hadamard matrix [12,

Prop. 2.1] is
1 1
(1)

Both inner products of type (iii) that occur in H(a+1ib) (where a,b € R) have
magnitude |(a + ib) — (a + ib)| = |20].
Using Lemma 2, H(a + ib) is therefore a set of equiangular lines if and only

if we can solve the equations
la* + b* — 1| = |2a] = |2b| for a,b € R.
This can be done exactly when a € {1(1 £ V3), —1(1+ \/3)} and b = +a. O

Proposition 4 (d = 3). Let H be an order 3 complex Hadamard matriz. Then
H(v) is a set of 9 equiangular lines in C* if and only if v € {0, —2,1 4 /3i}.

Proof. Let w = €2™/3. Up to equivalence, the only order 3 complex Hadamard
matrix [12, Prop. 2.1] is

g, —

1
w
w2

H =

— = =
&

All inner products of type (iii) that occur in H(v) are derived from rows of H
having inner product 1+ w + w? = 0. In H(v), each of these inner products
takes the form w’(v + tw 4+ w?) or W (v + w + vw?) for some j € {0, 1,2}. For
v = a +ib with a,b € R, these inner products have magnitude |a — 1 4 b\/3|
and |a — 1 — bv/3], respectively, and both magnitudes occur.
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Using Lemma 2, H(a +ib) is therefore a set of equiangular lines if and only
if we can solve the equations

a2 4+02—1)=|2a+1]=]a—1+bV/3] =|a—1—bV3| fora,beR.
This can be done exactly when (a,b) € {(0,0),(=2,0), (1,£v3)}. O

We now complete the proof of our main result, by showing that if H(v) is a
set of d? equiangular lines for d > 3 then we must be in case (3) of Theorem 1.

Theorem 5. Let d > 3 and let H be an order d compler Hadamard matrizx.
Then H(v) is a set of d* equiangular lines if and only if d = 8 and H is
equivalent to a real Hadamard matriz and v € {—1 £ 2i}.

Proof. Let H = (hjx) be an order d complex Hadamard matrix. We consider
two cases.

Case 1 is where, for every pair of distinct rows of H, all summands of
the inner product of the rows take values in a set {£,—¢} for some £ € C
(depending on the row pair) of magnitude 1. We now show that, in this case,
H is equivalent to some real Hadamard matrix H’. Firstly transform each
entry of the first row of H to be 1, by multiplying each column k& of H by the
constant h},! € C of magnitude 1. Then all summands of the inner product
of the resulting rows 1 and j take values in a set {{;, —¢;} for some &; € C of
magnitude 1, and so all entries of row j lie in {;, —¢;}. Multiply each row j
by the constant & ! € C of magnitude 1 to obtain a real Hadamard matrix H'.

We next show that all inner products of type (iii) that occur in H'(v) have
one of exactly two magnitudes. All such inner products are derived from rows
of H' having inner product £(1)+£(—1), and ¢ > 2 since d > 3. In H'(v), each
of these inner products takes the form (—=1)7 (v +7+ (£ —2)(1) + £(-1)) =
(1) (v+v—-2) or (1) (v—D+ (£ —=1)(1) + (4 — 1)(-1)) = (-1)!(v — D)
for some j € {0,1}. For v = a + ib with a,b € R, these inner products have
magnitude |2a — 2| and |2b|, respectively, and both magnitudes occur.

Using Lemma 2, H(a + ib) is therefore a set of equiangular lines if and only
if we can solve the equations

la> +b* — 1| =|2a +d — 2| = |2a — 2| = |2b] for a,b € R.

This can be done exactly when d = 8 and (a,b) € {(—1,+2)}.

Case 2 is where the summands of the inner product of some pair of distinct
rows of H are &, &, &3 for distinct §; € C of magnitude 1, together with
M, ..., Ni—s for d—3 > 0 other elements n; € C of magnitude 1 (not necessarily
distinct from each other or from the &;). Thus in H(v) there are three pairs
of vectors, derived from this pair of rows, having inner products (v — 1)n; +

(=D&, (v =+ (T —1)§ and (v — 1) + (0 — 1)&.
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We now show that there is no a,b € R for which H(a + ib) is a set of
equiangular lines. Suppose otherwise, for a contradiction. Then the above
three inner products have equal magnitude for v = a + b, so that

[(a—=1+ib)m + (a—1—=ib)&|=|(a—1+ib)m + (a — 1 —ib)&|
(2) =|(a—=1+ib)m + (a — 1 —1ib)&|.

Notice that from Lemma 2, we cannot have (a,b) = (1,0) as this would imply

d = 0. Therefore (a —141b)r; # 0 and /(a — 1)2 4+ b2 # 0. Now the &; are all
distinct with magnitude 1, so (a — 1 —1ib)&, (a—1—1ib)&y, (a—1—1ib)&s are all
distinct with magnitude /(a — 1)2 4+ > > 0. But then it is clear geometrically
that only two of these three quantities can have equal magnitude after being
added to (a — 1 +b)n; # 0. This contradicts (2).

0
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